AC Impedance Spectroscopy Analysis of Improved Proton Exchange Membrane Fuel Cell Operation via Direct Inlet Gas Humidity Control

Li Tan¹, Doug McClelland², and Anastasios P. Angelopoulos¹

¹Chemical Engineering Program
School of Energy, Environmental, Biological and Medical Engineering
University of Cincinnati,
Cincinnati, OH

²Mound Technical Solutions Miamisburg, OH

Introduction

- Water Management
 - In-situ and ex-situ investigations demonstrate the importance of water management in PEM fuel cell components to overall system performance and can guide materials design and selection.
- Example: bipolar plate flooding
 - Neutron Imaging

Neutron Imaging Technique. From Satija, R. et. al. *Journal of Power Sources*, 129, 238-245. Contributes to parasitic power losses

Problem Statement

 Systematic investigation of how inlet relative humidity interacts with gas stoichiometry and current density to impact overall system performance for a given design has yet to be conducted.

$$vol.flow = stoic \ x \left(\frac{i}{nF}\right) \left(\frac{MW}{\rho}\right)$$
 Mol. weight Paraday Constant

- Compared to bubblers, pervaporation method used in automotive has:
 - —No parasitic power loss due to passive humidification scheme
 - —Larger contact surface area, enabling smaller size

However, whether sizing is adequate to maintain thermodynamic control under conditions necessary for such a study is uncertain.

Objectives

- Investigate whether systematic control over inlet gas relative humidity and stoichiometry can provide new guidelines for optimizing PEM fuel cell performance.
- Determine impact of humidity on mechanisms that affect fuel cell performance.
- Determine whether thermodynamic control is achieved in a commercially available, pervaporation-based humidification system.

Approach

- Direct measurement of relative humidity at the fuel cell inlet.
- Indirect measurement of fuel cell performance using polarization curve and AC Impedance Spectroscopy analyses.
- Maintain constant gas stoichiometry as current density is brought to the limiting value in any single experiment.
- Full factorial experiment covering full spectrum of inlet RH settings.

Cell temperature: 80 C Stoichiometry: 1.5 and 3.0 Pressure: atmospheric

Exp#	Anode RH (%) Cathode RH (%)
1	95	95
2	80	80
3	40	40
4	20	20
5	95	80
6	95	40
7	95	0
8	80	95
9	40	95
10	0	95

Equipment and Materials

- MT571 Test Stand from Mound Technical Solutions, Miamisburg, OH
 - Pervaporators for anode/cathode humidity injection.
 - Capacitive inlet RH sensors integrated into a proprietary probe adapter.
 - Mass flow control with automated switching between low/high ranges (200 ml/min / 2 L/min).
 - TDI RBL 488 400 W Load
 - Gamry FC150 EIS Module
 - AC amp. at 7.5 % DC
 From 10 kHz to 0.01 Hz
- Softgoods: 25 cm² MEA with GDL:
 - Nafion® 112 membrane
 - 0.2mg Pt/cm² loading on anode
 - 0.4mg Pt/cm² loading on cathode
 - electrode area of 25 cm²
- Dry grade air, pre-purified hydrogen,

Results: Deviation from Thermodynamic Control

Humidifier water temperature used to achieve target RH. All measured test stand values can have an error of 2 C.

Humidifier Water Temperature(C)	Thermo dynami cally Controll ed	Present Test Stand			
		<0.3L/ min	0.3- 0.6L/m in	0.6- 1L/mi n	1L/mi n and above
Water Temperature for 95%RH	78	68	72	74	75
Water Temperature for 80%RH	75	63	66	70	72
Water Temperature for 40%RH	59	48	52	55	57
Water Temperature 7or 20%RH	45	40	44	45	45

Hypothesis: amount of water being picked up from the reservoir in the lines between humidifier and inlet

	Present Test Stand				
Water Consumpti on (mL/hr)	<0.3L/mi n	0.3- 0.6L/min	0.6- 1L/min	1L/min and above	
95%RH	2.9	3.8	4.3	4.9	
80%RH	2.8	4.4	4.3	4.1	
40%RH	1.1	1.5	1.5	1.2	
20%RH	0.3	0.1	0.0	0.0	
Assumed Flow Rate	0.3L/min	0.6L/min	1L/min	1.5L/min	

- •Humidification of either electrode drastically improves the performance of the cell at both 1.5 and 3.0 stoich.
- •Interestingly, optimum performance at A=80RH and C=95RH

Fully Humidified Cathode

Nyquist Plot Interpretations

Typical Nyquist plot obtained in the present study. This particular one is generated under a anode 95%RH, cathode 95%RH, 1.5 cathode stoich, 2.5A (0.1 A/cm²) DC current.

Ohmic Resistance

Keeping cathode fully humidified keeps ohmic resistance low

Mass Transfer Resistance

Mass transport resistance is reduced at higher stoics but has optimum anode RH at lower stoic.

Charge Transfer Resistance

Charge transfer resistance appears to depend somewhat on cathode inlet RH at the higher stoic.

Fully humidified anode

Conclusions

- Optimal RH conditions exist for a given fuel cell design at a given Stoic and Current density:
 - Membrane hydration ensured by cathode humidifcation.
 - Balance between catalyst flooding and membrane hydration achieved by anode humidification.
 - Cathode catalyst performance enhanced by humidification
- Most effective way to humidify depends on air flow rate
 - Low air flow rate: anode humidification is more efficient
 - High air flow rate: must humidify air, otherwise cathode membrane dehydrates.
- Direct inlet humidity monitor is necessary for achieving desired RH level

Acknowledgements

General Motors Corporation

Mound Technical Solutions

